| | MHC-II | MHC-II | MHC-II | MHC-II | |--|---------------------------------------|--|--|--| | MHC Haplotype H-2 ^b (C57BL/6 mice) | I-A _α ^b | I - A_{β} ^b | $(I-E_{\alpha}{}^{b} not$ | I - $E_{\beta}{}^{b}$ | | Functional MHC-II available in H-2 ^b | $I-A_{\alpha}{}^{b}I-A_{\beta}{}^{b}$ | | No I-E available in H-2 ^b | | | MHC Haplotype H-2 ^k (CBA mice) | I-A _α ^k | $I-A_{\beta}^{k}$ | I-E _α ^k | I - E_{β}^{k} | | Functional MHC-II available in H-2 ^k | $I-A_{\alpha}{}^kI-A_{\beta}{}^k$ | | $I-E_{\alpha}{}^{k}I-E_{\beta}{}^{k}$ | | | H-2 ^{b/k} (C57BL/6 x CBA) | I-A _α ^b | I - A_{β}^{b} | $(I-E_{\alpha}{}^{b} \text{ not present})$ | I - $E_{\beta}{}^{b}$ | | | $I-A_{\alpha}^{k}$ | $I-A_{\beta}^k$ | I-E _α ^k | $I\text{-}E_{\beta}{}^{k}$ | | | Not only | I-A _α ^b I- | I-A _α ^k | I-E _α ^k | | Functional MHC-II
available in H-2 ^{b/k} | | A_{eta}^{b} | $I-A_{\beta}^{k}$ | I - E_{β}^{k} | | | But also | $I-A_{\alpha}{}^{b}I-$ $A_{\beta}{}^{k}$ | $I-A_{\alpha}{}^{k}$ $I-A_{\beta}{}^{b}$ | I-E _α ^k
I-E _β ^b | **S2 Table.** Why there are more variants of MHC-II restricting molecules available in C57BL/6 x CBA F1 mice than in C57BL/6 or CBA mice? A promoter mutation disrupts production of I-E α^b in C57BL/6 mice (Grey font), which are therefore unable to produce MHC-II I-E (Grey). In contrast, H-2^k mice can produce both I-A α^k I-A α^k and I-E α^k I-E α^k . C57BL/6 x CBA F1 mice have an even bigger repertoire of possible functional MHC-II isoforms available due to heterodimerization of α and β subunits from H-2^b and H-2^k haplotypes.